Quantcast
Viewing all articles
Browse latest Browse all 131

Deep Deterministic Portfolio Optimization. (arXiv:2003.06497v1 [q-fin.MF])

Can deep reinforcement learning algorithms be exploited as solvers for optimal trading strategies? The aim of this work is to test reinforcement learning algorithms on conceptually simple, but mathematically non-trivial, trading environments. The environments are chosen such that an optimal or close-to-optimal trading strategy is known. We study the deep deterministic policy gradient algorithm and show that such a reinforcement learning agent can successfully recover the essential features of the optimal trading strategies and achieve close-to-optimal rewards.


Viewing all articles
Browse latest Browse all 131

Trending Articles